ture; py, initial pressure; x, coordinate; A and D, auxiliary quantities, determined by the
relations (10) and (12); r, temperature restoration coefficient; f, relative mass fraction

of the gas phase; C,, a constant; Re, Reynolds number; Pr, Prandtl's number; p,, dynamic
viscosity of the gas; dp, rp, diameter and radius of the particles, respectively; Cp, coef-
ficient of resistance of a spherical particle; Nu, Nusselt number; a and 8, coefficients

of proportionality of the velocity; mj, ratio of the mass flow rates of the liquid (solid)
and gas phases; k, ratio of the velocities of the liquid (solid) and gaseous phases; a = (1 —
£)/pp3 Pos pressure for a = 0; p,, a small pressure perturbation for ¢ # 0; m and §, quan-
tities determined by the formulas (23) and (26); y, an auxiliary function, determined by

the expression (30); I, length of the nozzle. Indices: @, gas phase; b, liquid (solid) phase;
i, initial state; and f, final state.
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FLOW STABILITY OF A FILM OF VISCOUS LIQUID ON THE SURFACE OF A
ROTATING DISK

G. M. Sisoev and V. Ya. Shkadov UDC 532.516

The stability of a steady axisymmetric flow of a film is studied using the assump-
tion of local plane parallelity. We present the results of numerical caleculation,.

The flow of a film along the surface of a flat rotating disk is encountered in many tech-
nological processes. An example is the preparation pf metal powder by the centrifugal method,
In the present work we study the linear stability of a steady axisymmetric flow of a film with
a relatively small thickness.

Let us suppose that a viscous incompressible liquid is supplied at a constant flow rate
near the center of a rotating disk. To describe the flow of the film which is formed on the
disk we choose the functions [1]

W b ’,,=_1_(__‘£9___1), w= e = P
Qrd? 82 Qr QH 62 o2 H;

where & = HovQ/v. The independent variables are chosen as x = In(r/R), 6, y = z/H,, s = Qt/s2.

The functionsu, v, w, and p, which depend on x, 6, vy, and s and on the form of the free
surface of the film h(x, ©, s), are determined by solving the system of Navier—Stokes equa-
tions, the sticking and impermeability conditions on the surface of the disk, the kinematic
condition on the free surface where we have also the conditions of zero tangential stress
along two directions, and the condition that the stress normal to the surface in the liquid
is equal to the stress of capillary forces [1].
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The problem of steady axisymmetric flow of the film with a relatively small thickness
has an asymptotic solution [1]. Neglecting the surface tension and terms of order €2, where
e(x) = Hcexp(—=x)/R, the principal terms in the expansion of the radial and azimuthal velocity
components of this solution in a series in &“ have the form

U_.H_____.l__zv__az 3 3 14 (L
1= Hy 5 1= Hly——2H1y~—4—y ,

and the thickness of the film is H,(x) = H, (0)exp(—2x/3).

The linear stability of a steady axisymmetric flow is studied using the assumption of
local plane-parallelity, when the ratio of the characteristic scale along the x coordinate
under perturbation to the corresponding scale for the fundamental flow is assumed to be a
small quantity. The non~steady-state solution of the problem is represented in the form

u(x, 6, y, s)=Uy (%, y)"!-H%ul(g! 9, n, 1), U=V1+H301, (2)
W=H(2)w1/€0, p = Hopy/ey, h= Hy+ Hhy,

where Ho = Hy(%0); €0 = €(X0); £ = (x — Xo)/(coHo); n = y/Ho; T = s/H5 . With accuracy up to
terms of order €o, the transformation of independent variables corresponds to the use of the
thickness of the film Hx = HpoHo for r = ro = R exp Xo as the characteristic length. Substitut-
ing the solution (2) into the equations and boundary conditions of the full formulation of

the problem and neglecting terms of order eo and §“, one can obtain

6u1 ouy , O,y ) ] opy 0%u o%u ou
U U+ 2w |= | Lo L __De2 1
ot [( ta) ot ( on ! 0 0oE? on? ( 201) ’

[(U+u1) a{g (Vr+ avl )wl]z—a-z—v‘—'—l——aizé—“—Dz( avl +2u1) ,

on og? on? 00
éwl awl 0p1 62w1 Pwy, D2 0w,
+Re [(U ) } ot o =
O =0, =0 yy=0v,=w, =0, 3)
0t 67]
EESEy [(U+ul) ]+D2 ~o,

A ()

601 ahl 601

v — =0,
+ on 0 0§
2 [ dw oh, ( oh, Ou, U du; 0w ﬂ Re *hy 0 be ( oh, )2
T [ E T e a an & )T Wer? o T Tlw )

where Re = UsHx/v; We = pURH,/0; Ux = roR*H}/v; U = U;/Hg; V = V,/H3. The prime in expres-
sions (3) denotes differentiation with respect to the variable n, and the velocity components
of the fundamental flow depend on X, as a parameter.

To investigate the stability of the fundamental solution, the problem (3) is linearized
and one considers the wave solutions of the form £,(£, 6, n, 1) = fa(n)exp i(cf + né — wt)
for which one can obtain, after some transformations [2],

WV __2a2y’ - otw — iaRe [E (0" — a?w) — E'w} — 2ia D?>v' = 0, %)
v —(a? + ia Re E)v — 2ia—' D?*w’ —ReV'w =0,

n1=0iw=0 =v=0, (5)
=l + @ —EENYo=0, v—iV(aE)lw=0,
(3m2+taReE)w + ia®Re (We E)~1w— 2iaD*v =0 (6)
where E= U+ v ~c; v = nD (aRe) ™ = w(aRe)~*; and the subscript of the amplitude func-

tions vz and wz has been omitted.
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Fig. 1 Fig. 2

Fig. 1. Curves of neutral stability of concentric per-
turbations with space periodicity for the fundamental
flow with velocity profile (1) for F = 0.0001: 1) G =
50; 2) 100; 3) 400.

Fig. 2. Radial dependence of the stability characteris-
tic for the most intensely growing perturbations with
space periodicity for the fundamental flow with the ve-
locity profile (1) for F = 0.0001 in the case of init-
ial conditions for x = 0, D® = 0.5162, G = 111.3: 1)
wave numbers a,; 2) amplification coefficients aj.

The equations and boundary conditions (4)~(6) make it possible to consider perturbations
with space or time periodicity. The determination of these perturbations is associated with
the solution of eigenvalue problems in which one calculates the velocity of perturbations Rec
or the complex wave number a, respectively. The fundamental solution is unstable if there
exist eigenvalues with a positive imaginary part for perturbations with space periodicity, or
with a negative imaginary part for perturbations periodic in time.

By way of example of the parameters of the problem (4)-(6), we used the numbers F, G,
and D, and eoHo = D/G, Re = GD®, We = FG?*D®.

It should be noted that, for films of relatively small thickness (D? << 1), the solution
of problem (4)-(6) for concentric (n = 0) perturbations with space periodicity is similar to
the solution of the problem of the fundamental flow has the form U =n — n?/2 [1]. 1In the
case of long perturbations (e << 1) and intermediate numbers Re(aRe v 1), this problem has
an asymptotic solution for which, near the neutral stability curve [1],

aRe 1 — 3a?We—! (7)
140.16 (2 Re)?’

Problem (4)-(6) is solved by the numerical method of differential driving with ortho-
normalization of the partial solutions in an internal point [3]. We determined three linear-~
ly independent solutions for which the initial conditions for n = 1 satisfy relations (6).
The characteristic equation for the eigenvalues follows from conditions (5) and from the non-
triviality of the solution. The numerical algorithm was tested by using solutions (7), for
example, for a = 0.01, and conditions of Table 1 which gives a number of eigenvalues; the
asymptotic solution is then c, = 0.9996 + 10,01094,

¢g=14(i—0.4aRe)

It should be noted that, within the adopted model, the study of stability of the funda-
mental flow for perturbations with periodicity with respect to the angle 6 reduces to an
analysis of concentric perturbations since the dependence on the parameters for perturbations
with space periodicity has the form ¢ = v + £(¢; F, G, D; U, V) and for time periodic pertur-
bations, @ = f(w — nD*; F, G, D; U, V).

The calculations were carried out for the values 0.0001 << F << 0.001, 50X G < 2000,
which are characteristic for the experimental works [2, 4, 5]. We considered films of rela-
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TABLE 1. Eigenvalues for Concentric Perturbations with Space
Periodicity for the Fundamental Flow with Velocity Profile
(1) for F = 0.0001, G = 100, Re = 10

o ] Cp ! ¢; ” o ’ Cp i ¢;

0,01 0,9655 0,01048 0,06 0,9563 0,02890

0,02 0,9640 0,01991 0,07 0,9566 0,02032

0,03 0,9619 0,02731 0,08 0,9592 0,006308
0,04 0,9596 0,03178 0,09 0,9651 —0,01352

0,05 0,9575 0,03253

TABLE 2. Eigenvalues for Concentric Perturbations with Time
Periodicity for the Fundamental Flow with Velocity Profile
(1) for F = 0.0001, G = 100, Re = 10

® | an ‘ a;

o) | an ’ o; u

0,1 0,01036 —0,0001164 0,6 0,06279 ~—0,001784
0,2 0,02673 —0,0004433 0,7 0,07324 —0,001240
0,3 0,03115 —0,0009135 0,8 0,08328 —0,00003910
0,4 0,04164 —0,001412 0,9 0,09262 0,001723
0,5 0,05220 —0,001772

tively small thickness for which D* << 0.5. An example of the calculation is shown in Fig.
1 where the region of instability lies below the corresponding curves.

For the fundamental flow (1) for F = 0.001, the regions of instability for fixed values
of the parameter G grow in comparison with the case F = 0.0001. This indicates a stabilizing
effect of the surface temsion.

By continuing the solution through the curve of neutral stability, one can obtain per-
turbations which are periodic in time. For these perturbations, Table 2 gives examples of
eigenvalues.

Using the hypothesis that the perturbations which are realized in experiments have the
largest amplification coefficient, one can calculate the wavelengths for concrete steady flows.
Figure 2 shows an example of such calculations.

The results obtained within the adopted model agree with the data [2] where cy = 0.57-
0.93. The values of cy = 2.7-4 from [5] are too high. The magnitude of the wave numbers
was not compared because the information about the experimental conditions in that work is
limited.

NOTATION

2, angular velocity of disk rotation; p, v, o, density, kinematic viscosity, and the sur-
face tension of the liquid; t, time; r, 6, z, stationary cylindrical coordinate system; uy,
ug, u,, velocity components; pg, pressure; Hq, characteristic thickness of the filmj R,
smallest radius of the region of the flowj ro, radius at which the stability is studied;

Hx, thickness of the film for r = re; and D = H*/§7;, G = rovQ/v, F = p/v°Q/0, parameters of
the problem.
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